Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering

O'Donnell et al. 2018

Abstract

"Quantitative measurement of pH and metabolite gradients by microscopy is one of the challenges in the production of scaffold-grown organoids and multicellular aggregates. Herein, we used the cellulose-binding domain (CBD) of the Cellulomonas fimi CenA protein for designing biosensor scaffolds that allow measurement of pH and Ca2+ gradients by fluorescence intensity and lifetime imaging (FLIM) detection modes. By fusing CBD with pH-sensitive enhanced cyan fluorescent protein (CBD-ECFP), we achieved efficient labeling of cellulose-based scaffolds based on nanofibrillar, bacterial cellulose, and decellularized plant materials. CBD-ECFP bound to the cellulose matrices demonstrated pH sensitivity comparable to untagged ECFP (1.9–2.3 ns for pH 6–8), thus making it compatible with FLIM-based analysis of extracellular pH. By using 3D culture of human colon cancer cells (HCT116) and adult stem cell-derived mouse intestinal organoids, we evaluated the utility of the produced biosensor scaffold. CBD-ECFP was sensitive to increases in extracellular acidification: the results showed a decline in 0.2–0.4 pH units in response to membrane depolarization by the protonophore FCCP. With the intestinal organoid model, we demonstrated multiparametric imaging by combining extracellular acidification (FLIM) with phosphorescent probe-based monitoring of cell oxygenation. The described labeling strategy allows for the design of extracellular pH-sensitive scaffolds for multiparametric FLIM assays and their use in engineered live cancer and stem cell-derived tissues. Collectively, this research can help in achieving the controlled biofabrication of 3D tissue models with known metabolic characteristics."

 

Read publication

 

O'Donnell et al. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomaterialia 2018; Volume 80, p.85-96.

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures
Position Paper | 3 min

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures

Read more
Innovative Approaches in Drug Discovery and Cancer Therapy: Key Insights from the 10th Annual UPM Biomedicals Conference
Story | 9 min

Innovative Approaches in Drug Discovery and Cancer Therapy: Key Insights from the 10th Annual UPM Biomedicals Conference

Read more
Nanofibrillated Cellulose for Skin Substitutes
Story | 2 min

Nanofibrillated Cellulose for Skin Substitutes

Read more