How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects

Eslahi, N., Soleimani, F., Lotfi, R., Mohandes, F., Simchi, A., & Razavi, M. (2024)

Abstract

"Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds."

 

Read publication

 

Eslahi, N., Soleimani, F., Lotfi, R., Mohandes, F., Simchi, A., & Razavi, M. (2024). How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects. Progress in Materials Science, 145, 1012931

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures
Position Paper | 3 min

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures

Read more
Innovative Approaches in Drug Discovery and Cancer Therapy: Key Insights from the 10th Annual UPM Biomedicals Conference
Story | 9 min

Innovative Approaches in Drug Discovery and Cancer Therapy: Key Insights from the 10th Annual UPM Biomedicals Conference

Read more
Breakthroughs in Biomedical Innovation: Highlights from the 10th Annual Conference
Story | 6 min

Breakthroughs in Biomedical Innovation: Highlights from the 10th Annual Conference

Read more