Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

Lou Y.-R, et al. 2015

Abstract

"Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures."

 

Read publication

 

Lou Y.-R, et al. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells. Scientific Reports 2015; 5, 13635.

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures
Position Paper | 3 min

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures

Read more
Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels
Story

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels

Read more
The use of Nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells
Story | 1 min

The use of Nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells

Read more